# SURVEY REPORT FOR CRIMAC SFI 2023

## Toktrapport No. 7 2024

#### Cruise leader: Nils Olav Handegard (IMR)

The complete report is available at: <u>https://www.hi.no/hi/nettrapporter/toktrapport-en-2024-7</u>. Below is Chapter 8 that involves experiments that are part of the FHF 901926 "Testing av metoder for å redusere interaksjoner mellom fiskeri og hval"

## Chapter 8 - Testing whale scarer sounds on herring behaviour

#### 8.1 - Objective

Norwegian catches of the pelagic species herring, mackerel and capelin are about 1 mill tons annually, and about 80% of these are caught using purse seines (Fiskeridirektoratet). This approach make the fish easily accessible for marine mammals and birds, and some species, such as killer whales, may follow fishing vessels in the search of "a free meal" (e.g. Vogel et al., 2021). This may create unfortunate incidents with whales getting entangled in the nets; with potential for both injury and even death for the animal and lost catches and gear for the fishermen (Bjørge et al., 2023). In the ongoing project "Kartlegging og testing av metoder for å redusere interaksjoner mellom fiskeri og hval", it is tested whether sound can be used to keep whales away from ongoing fishing operations. The project results show a good deterrent effect on killer whales (Langstein, 2023). These sounds can be detected by herring, a species with good hearing due to a duct connecting its swimbladder to the inner ear (Enger, 1967). If the herring respond to the sound signals, it may negatively affect the fishing operation. The objective of this task is to test whether the whale deterrent sounds affect the behaviour of herring or not.

#### 8.2 - Methods

The TAST (target specific startle technology) system, developed by Genuswave LDT, transmits sound pulses that are of short duration and rise time with random intervals between transmitted pulses. Based on the published literature on this system (Götz and Janik, 2015; Langstein, 2023), we generated sound sequences with the following properties:

- Each signal was 200 ms in duration
- Signal rise time was less than 5 ms
- Interval between pulses was random, varying from 1 to 40 seconds
- Signals were band passed white noise

The TAST system also randomizes the frequency bands within the sound sequence, however, in our experiment, we aimed at testing different frequency bands separately to assess if any frequency bands influenced herring behaviour. Consequently, we separated the sound clips into 4 different frequency band, each covering one octave:

Frequency band 1: 200-400 Hz Frequency band 2: 400-800 Hz Frequency band 3: 800-1600 Hz

#### Frequency band 4: 1600-3200 Hz

In addition to the TAST signals, we also played back recordings of killer whales. These sounds were recorded in Vestfjorden, Northern Norway in 2006, of killer whales feeding on overwintering herring. Recordings consisted both of calls and echolocation signals.

The playbacks were done with an underwater speaker (Lubell Labs LL1424HP) designed for Underwater Acoustic Deterrent Systems. It transmits within the frequency range of 200Hz - 9kHz, with maximum power at 600 Hz. Sound recordings, to monitor the sound level and proper output, were done with a sound trap 300 hydrophone from ocean instruments.

The sound source was lowered from a crane from the side of the ship to a depth of 15 m, limited by its cable length. A hydrophone was deployed 10 m below the source to measure the sound source level close to the source. A second hydrophone was lowered from a crane to 100 m depth, which was the assumed depth of the main herring layer, to measure the sound level received by the herring (c.f. Figure 25).



Figure 25. Set up of sound source, hydrophones and echosounder.

The experiment was conducted as a block design, where each block consisted of a 10 min sequence of each of the 4 frequency bands. The order of the frequency bands within each block were randomized prior to start of the experiment. Also, a random selection of each of the 20 available clips were made for each frequency band.

Prior to start, we surveyed the area with echosounder and sonar to map herring distribution in the area. Once a suitable location was selected, the sound source and hydrophones were lowered. After deploying the instrument, we allowed the fish to acclimatize after any potential disturbance from the operation. The ship's main engine was turned off and the ship were drifting to avoid sound from

the ship to disturb the fish. The 10 min sound sequences were played with 10 min no-sound control between, and we always started with a 10 min control.

After each block, we waited 1 h before starting the next exposure. During this period, the equipment was brought back on deck, and the ship relocated before the next block.

Observations of herring behaviour were conducted by the ships echosounder (EK80), measuring the density and depth structure of the herring layer, hence detecting potential vertical or horizontal avoidance behaviour.

#### 8.3 - Preliminary results

The experiments were conducted over 3 days in November 2023, and a total of 10 blocks were conducted, and 4 playbacks of killer whale vocalisations (Table 9). All experiments were conducted in Kvænangen, which is the main overwintering area for the Norwegian Spring Spawning herring. Due to differences in wind conditions, the distance drifted during a block varied from 3500 m (block 2) to less than 100 m (block 6).

**Table 9.** Overview of the experimental blocks. Treatment refers to the different frequency bands. Freq1 is the 200-400 Hz band, Freq2 is the 400-800 Hz band, Freq3 is the 800-1600 Hz band, and Freq4 is the 1600-3200 Hz band.

| Block | Treatment | Sound clip | Date       | Start         |             |             | Stop          |             |             |
|-------|-----------|------------|------------|---------------|-------------|-------------|---------------|-------------|-------------|
|       |           |            |            | Time<br>(UTC) | Lat         | Lon         | Time<br>(UTC) | Lat         | Lon         |
| 1     | Freq2     | 1          | 23.11.2023 | 20:03:00      | 70° 02.7970 | 21° 21.5581 | 20:13:00      | 70° 02.9382 | 21° 20.7925 |
| 1     | Freq3     | 7          | 23.11.2023 | 20:23:00      | 70° 03.0985 | 21°20.1008  | 20:33:00      | 70° 03.2709 | 21° 19.54   |
| 1     | Freq1     | 2          | 23.11.2023 | 20:43:00      | 70° 03.4353 | 21° 19.0100 | 20:53:00      | 70° 03.5889 | 21° 18.4655 |
| 1     | Freq4     | 16         | 23.11.2023 | 20:53:00      |             |             | 21:03:00      |             |             |
| 2     | Freq1     | 2          | 23.11.2023 | 22:30:00      | 70° 03.0859 | 21° 22.4477 | 22:40:00      | 70° 03.19   | 21° 21.9587 |
| 2     | Freq4     | 8          | 23.11.2023 | 22:50:00      | 70° 03.3286 | 21° 21.5122 | 23:00:00      | 70° 03.4410 | 21° 20.9601 |
| 2     | Freq2     | 18         | 23.11.2023 | 23:10:00      | 70° 03.5412 | 21° 20.3905 | 23:20:00      | 70° 03.6914 | 21° 19.6117 |
| 2     | Freq3     | 9          | 23.11.2023 | 23:30:00      | 70° 03.7905 | 21° 19.0820 | 23:40:00      | 70° 03.9084 | 21° 18.4711 |
| 3     | Freq3     | 18         | 24.11.2023 | 01:10:00      | 70° 03.3241 | 21° 21.8073 | 01:20:00      | 70° 03.4261 | 21° 21.4238 |
| 3     | Freq2     | 13         | 24.11.2023 | 01:30:00      | 70° 03.5580 | 21° 20.9224 | 01:40:00      | 70° 03.7007 | 21° 20.3202 |
| 3     | Freq1     | 5          | 24.11.2023 | 01:50:00      | 70° 03.8491 | 21° 19.6970 | 02:00:00      | 70° 03.9847 | 21° 19.1156 |
| 3     | Freq4     | 6          | 24.11.2023 | 02:10:00      | 70° 04.1054 | 21° 18.5046 | 02:20:00      | 70° 04.1952 | 21° 18.0275 |
| 4     | Freq2     | 3          | 24.11.2023 | 03:56:09      | 70°03.3472  | 21°21.4728  | 04:06:16      | 70°03.4029  | 21°20.9631  |
| 4     | Freq1     | 1          | 24.11.2023 | 04:16:08      | 70°03.4674  | 21°20.4649  | 04:26:08      | 70°03.5591  | 21°19.9779  |
| 4     | Freq4     | 20         | 24.11.2023 | 04:36:05      | 70°03.6655  | 21°19.5003  | 04:46:04      | 70°03.7953  | 21°19.0285  |
| 4     | Freq3     | 6          | 24.11.2023 | 04:56:03      | 70°03.9123  | 21°18.6263  | 05:06:00      | 70°04.0370  | 21°18.0839  |
| 5     | Freq2     | 6          | 24.11.2023 | 20:45:00      | 70° 04.3129 | 21° 23.4295 | 20:55:00      | 70° 04.2872 | 21° 23.4212 |
| 5     | Freq1     | 3          | 24.11.2023 | 21:05:00      | 70° 04.2755 | 21° 23.4195 | 21:15:00      | 70° 04.2776 | 21° 23.4207 |
| 5     | Freq3     | 17         | 24.11.2023 | 21:25:00      | 70° 04.2808 | 21° 23.4604 | 21:35:00      | 70° 04.2776 | 21° 23.5203 |

| 5  | Freq4                    | 3  | 24.11.2023 | 21:45:00 | 70° 04.2595 | 21° 23.5755 | 21:55:00 | 70° 04.2372 | 21° 23.6494 |
|----|--------------------------|----|------------|----------|-------------|-------------|----------|-------------|-------------|
| 6  | Freq3                    | 7  | 24.11.2023 | 23:05:00 | 70° 04.2952 | 21° 20.4899 | 23:15:00 | 70° 04.3001 | 21° 20.4454 |
| 6  | Freq1                    | 6  | 24.11.2023 | 23:25:00 | 70° 04.3073 | 21° 20.3982 | 23:35:00 | 70° 04.3025 | 21° 20.3737 |
| 6  | Freq4                    | 8  | 24.11.2023 | 23:45:00 | 70° 04.2903 | 21° 20.3883 | 23:55:00 | 70° 04.2757 | 21° 20.4327 |
| 6  | Freq2                    | 18 | 25.11.2023 | 00:05:00 | 70° 04.2692 | 21° 20.4910 | 00:15:00 | 70° 04.2579 | 21° 20.5165 |
|    | Killer whale<br>playback |    | 25.11.2023 | 00:25:00 | 70° 04.2170 | 21° 20.4412 | 00:35:00 | 70° 04.2006 | 21° 20.4163 |
| 7  | Freq3                    | 17 | 25.11.2023 | 01:30:00 | 70° 04.0957 | 21° 20.6217 | 01:40:00 | 70° 04.0862 | 21° 20.7318 |
| 7  | Freq2                    | 17 | 25.07.1972 | 01:50:00 | 70° 04.0751 | 21° 20.7987 | 02:00:00 | 70° 04.0615 | 21° 20.9004 |
| 7  | Freq1                    | 3  | 25.03.1921 | 02:10:00 | 70° 04.0464 | 21° 20.0210 | 02:20:00 | 70° 04.0319 | 21° 21.1081 |
| 7  | Freq4                    | 15 | 25.07.1972 | 02:30:00 | 70° 04.0234 | 21° 21.2236 | 02:40:00 | 70° 03.9966 | 21° 21.2825 |
| 8  | Freq3                    | 14 | 25.11.2023 | 04:05:00 | 70° 04.7295 | 21° 24.9886 | 04:15:00 | 70° 04.7220 | 21° 25.1773 |
| 8  | Freq2                    | 4  | 25.11.2023 | 04:25:00 | 70° 04.7221 | 21° 25.3613 | 04:35:00 | 70° 04.7040 | 21° 25.5132 |
| 8  | Freq4                    | 12 | 25.11.2023 | 04:45:00 | 70° 04.7003 | 21° 25.6642 | 04:55:00 | 70° 04.7080 | 21° 25.8766 |
| 8  | Freq1                    | 20 | 25.11.2023 | 05:05:00 | 70° 04.7098 | 21° 26.0699 | 05:15:00 | 70° 04.7080 | 21° 26.2897 |
|    | Killer whale<br>playback |    | 25.11.2023 | 05:25:00 | 70° 04.7161 | 21° 26.5306 | 05:35:00 | 70° 04.7161 | 21° 26.5306 |
| 9  | Freq1                    | 1  | 25.11.2023 | 17:39:00 | 70° 05.0908 | 21° 23.8230 | 17:49:00 | 70° 04.9905 | 21° 23.7241 |
| 9  | Freq2                    | 9  | 25.11.2023 | 17:59:00 | 70° 04.8974 | 21° 23.6813 | 18:09:00 | 70° 04.8974 | 21° 23.6813 |
| 9  | Freq3                    | 12 | 25.11.2023 | 18:30:00 | 70° 04.5597 | 21° 23.8611 | 18:40:00 | 70° 04.4537 | 21° 23.9663 |
| 9  | Freq4                    | 19 | 25.11.2023 | 18:50:00 | 70° 04.3389 | 21° 24.1216 | 19:00:00 | 70° 04.2412 | 21° 24.2885 |
|    | Killer whale<br>playback |    | 25.11.2023 | 19:10:00 | 70° 04.1648 | 21° 24.4727 | 19:20:00 | 70° 04.0471 | 21° 24.7151 |
| 10 | Freq3                    | 17 | 25.11.2023 | 20:35:00 | 70° 04.5601 | 21° 20.3392 | 20:45:00 | 70° 04.3959 | 21° 20.3567 |
| 10 | Freq2                    | 1  | 25.11.2023 | 20:55:00 | 70° 04.2276 | 21° 20.3804 | 21:05:00 | 70° 03.9715 | 21° 20.4941 |
| 10 | Freq4                    | 2  | 25.11.2023 | 21:15:00 | 70° 03.8923 | 21° 20.5425 | 21:25:00 |             |             |
| 10 | Freq1                    | 6  | 25.11.2023 | 21:35:00 | 70° 03.6319 | 21° 20.7099 | 21:45:00 | 70° 03.5162 | 21° 20.8360 |
|    | Killer whale<br>playback |    | 25.11.2023 | 21:55:00 | 70° 03.4168 | 21° 20.9938 | 22:05:00 | 70° 03.3193 | 21° 21.1426 |

Before starting the experiments, the sound source was tested with all the frequency bands and levels measured with the hydrophones 10 m below the source and at 100 m depth. Based on these measurements the source level for the 4 frequency bands were calculated (Figure 26).



**Figure 26.** Approximate source level for the 4 frequency bands. The blue curve is based on the measurements of the hydrophone 10 m below the source, the orange curve on the hydrophone at 100 m depth. In particular the hydrophone at 100 m depth show quite a lot of noise due to hydraulics and/or echosounder. This is particularly apparent for Freq 4, where the hydraulics were turned off approximately midway into the measurement.

A preliminary screening of the echograms did not show any apparent reaction of the herring (c.f. Figure 27). Further, no apparent indication of a change in acoustic density could be determined from the preliminary screening, c.f. block 1 in Figure 28.



Figure 27. Echogram for block 1. Dashed white lines indicate start and stop of the sound transmission.



Figure 28. Acoustic density as a function of time for block 1. Dashed lines indicate start and stop of sound transmission.

### References

Bjørge, A., Moan, A., Ryeng, K. A., and Wiig, J. R. 2023. Low anthropogenic mortality of humpback (Megaptera novaeangliae) and killer (Orcinus orca) whales in Norwegian purse seine fisheries despite frequent entrapments. Marine Mammal Science, 39: 481–491.

Enger, P. S. 1967. Hearing in herring. Comparative Biochemistry and Physiology, 22: 527–538.

Götz, T., and Janik, V. M. 2015. Target-specific acoustic predator deterrence in the marine environment. Animal Conservation, 18: 102–111.

Langstein, E. 2023, May 15. Assessing the deterrence effect of target-specific acoustic startle technology on killer whales and humpback whales during interactions with Norwegian purse seine herring fishery. UiT Norges arktiske universitet. https://munin.uit.no/handle/10037/29479 (Accessed 5 January 2024).

Vogel, E. F., Biuw, M., Blanchet, M.-A., Jonsen, I. D., Mul, E., Johnsen, E., Hjøllo, S. S., et al. 2021. Killer whale movements on the Norwegian shelf are associated with herring density. Marine Ecology Progress Series, 665: 217–231.